AI Precision Medicine

Precision Medicine and AI: the Future is Here

Stephanie Chung—McMaster University Honours Life Sciences 2023

With all the advancements in the scientific community and precision medicine, artificial intelligence (AI) has become a reality. Precision medicine is health care tailored to an individual based upon characteristics such as genes, lifestyle, and environment, according to Hodson (1), a Supplements Editor for Nature Outlook supplements. Artificial intelligence is investigating intelligence agents and systems that are capable of solving complex goals (2). 


Description automatically generated

Source: National Aeronautics and Space Administration 

Precision medicine requires using all medical therapies/techniques that have been developed, clinical trials, along with individuals to order to create a customized treatment plan for a patient. Precision medicine has the goal of moving away from a general one-size-fits-all approach and into tailor-made programs for individuals with the same conditions and similar characteristics. In order to do so, extensive data must be collected from a large population. In 2015, Barack Obama announced an initiative to have over a million people enrolled in the All of Us Research Program (3). The resulting data contained personally reported information, digital health technologies, electronic medical records, and sequencing. In the future, the goal of precision medicine is to shift the focus of health care to assessing health, proactive management of disease risks and prevention (3). In order to do so, volunteers (anonymously) are going to be required to allow permission of their health records and genetic codes, as precision medicine requires patient data (1). The issue at hand is getting the public to trust precision medicine researchers with such personal (valuable) information.  

A person looking at a screen

Description automatically generated with low confidence

Source: Corporate Finance Institute

Healthcare is already being influenced and shifted due to artificial intelligence. Some of the achievements made so far are in cancer and cardiovascular diseases (4). This is done through an integrating new and existing learning approaches, along with using the data gathered from artificial intelligence to benefit the patient, as well as advancing the scientific field (4). Artificial intelligence also has the ability to change the world and our everyday lives. Companies may use artificial intelligence to provide benefits for consumers, through wearable devices for health monitoring, smart household products that offer peace of mind, and voice-activated devices for assistance (5). These are all making our daily lives much more convenient and have become part of our daily routines. However, through these devices, data capturing is required, which may result in consumers feeling threatened by an invasion of privacy. This is technology most of us do not understand and in order to feel more secure, there need to be rules and regulations set on what companies can and cannot collect. Companies could also aid in this through actively educating consumers on the benefits of artificial intelligence along with what data they are recording (5). Artificial intelligence may result in less white-collar employees and qualified jobs (6). An example of this trend can be seen with physicians being outperformed with image recognition tools to detect skin cancer (6). However, we must acknowledge that as time passes, the job market is bound to change, however it is not certain where the workforce will shift to in the future (6). Therefore, we must cherish the jobs that cannot be automated, and regulations may need to be in place that require set businesses to allocate a certain amount of money to train the employees of non-automated jobs (6). 

In conclusion, precision medicine and artificial intelligence both require information collected from the public in order to keep advancing. As a society, it is our responsibility to keep up to date with what is being collected from us. It is still uncertain how artificial intelligence will impact our world; however, all we know is that in order to keep it from drastically changing our society, we must be aware of what it does and its limitations. 


  1. Hodson R. Precision medicine. Nature [Internet]. 2016 Nov [cited 2021 Feb 16]; 537(S49). Available from:
  1. Reddy S. Artificial intelligence applications in healthcare delivery. Boca Raton FL: Routledge; 2021. 4 p.  
  1. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff [Internet]. 2018 May [cited 2021 Feb 16];37(5). Available from:
  1. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. Npj Digital Medicine. 2019 November [cited 2021 Mar 8]; 2(112). Available from:
  1. Puntoni S, Reczek RW, Giesler M, Botti S. Consumers and artificial intelligence: an experiential perspective. J Mark [Internet]. 2020 Oct [cited 2021 Feb 16];85(1):131-151. Available from:
  1. Haenlein M, Kaplan A. A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif Manage Rev [Internet]. 2019 July [cited 2021 Feb 16]; 61(4):5-14. Available from:

Reference list for images: 

  1. National Aeronautics and Space Administration. Precision medicine: announcement of the next workshop for NHHPC members. [Image on internet]. 2017 [update 2017 Aug 6; cited 2021 Feb 16]. Available from:
  1. Corporate Finance Institute. Artificial intelligence (AI). [Image on internet]. Available from:

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s